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CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI

(metric) units as follows:

Multiply By To Obtain

degrees (angle) 0.01745329 radians

feet 0.3048 metres

inches 25.4 millimetres

kips (force) 4.448222 kilonewtons

kip-inches 112.9848 newton-metres

kips (force) per inch 0.1751269 kilonewtons per millimetre

kips (force) per square inch 6.894757 kilopascalp

kips (force) per square foot 47.88026 megapascals

pounds per square inch 0.006894757 megapascals

square inches 6.4516 square centimetres
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STRENGTH OF REINFORCED CONCRETE HYDRAULIC STRUCTURES

STRENGTH OF CIRCULAR REINFORCED CONCRETE CONDUITS
ANALYSIS AND DESIGN

PART I: INTRODUCTION

1. The series of reinforced concrete rings tested under applied radial

loads at the US Army Engineer Waterways Experiment Station (WES) provided a

large amount of experimental data about the behavior of such structures under

load. In an effort to maximize the returns from this test series, an earlier

anialytical study (Gerstle 1985) attempted to explain the ring response by use

of finite element analysis. That report also contained suggestions for apply-

ing limit, or plastic, analysis for strength prediction and as a possible de-

sign tool.

2. Following Gerstle (1985), the goals of the present study were ini-

tially set as follows:

a. To provide the theoretical basis for determination of the
strength of circular reinforced concrete culvert sections on the
basis of plastic theory.

b. To verify the applicability of this method by comparison of
analytical predictions with results of the WES test program.

c. To develop design methods based on a and b, leading to simple
procedures suitable fur office practice using longhand design
aids or computer programs.

3. During a meeting in March 1987, the thrust of the study was slightly

changed. Not only the plastic approach, but also elastic methods were to be

studied for applicability to the prediction of flexural strength of rings

under load and as design tools. Further, shear strength was identified as a

major problem to be studied within the scope of this report. Accordingly, the

results of the study are presented in the following sequence:

a. Part II covers plastic, or limit, analysis of concrete rings
under external loads, along with ductility considerations.

b. Part III is the elastic counterpart of Part II, laying the bases
for elastic analysis as well as for the deflection calculations
necessary for ductility determination.

c. Part IV uses the methods outlined in the first two parts to com-
pare strength predictions with data from the WES test program.
It also contains a critical comparison of the different analysis
methods.
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d. Part V uses the concepts of Parts II and III to develop tools

for flexural design of rings under distributed loads. While in

current form these are graphical longhand design methods, and
the intent is to outline computer approaches to be implemented

at a future time.

e. Part VI considers shear strength of these rings. Available
methods from the literature are applied, and a number of conclu-

sions of theoretical and practical interest are drawn.

f. Part VII summarizes the work, draws conclusions, and contains

suggestions for further study to arrive at optimal design of

pipe structures.

5



PART II: LIMIT ANALYSIS OF RINGS

Strength of Rings

General approach

4. Rings tested at WES collapsed in general by discrete hinge forma-

tion at critical sections (Wright and Chiarito 1987). Plastic analysis

assuming hinge formation at crown and springing sections (Hodge 1959) (Fig-

ure 1) appears to be a useful approach to the rational determination of the

collapse loads on these rings.

5. Because of the simplicity of this method, the effect of various

parameters such as geometric proportions, steel content, and load distribution

can be easily explored. It may also offer a straightforward design approach,

which is the goal of this study.

6. Plastic analysis as suggested here presumes ductile failure. If

this assumption is not satisfied, the plastic collapse load provides an upper

bound, or unsafe overestimation, of the actual ring strength. A ductility

check must be an integral part of the analysis.

7. Plastic analysis must satisfy two basic conditions:

a. The lower-bound theorem: Equilibrium must be satisfied without
exceeding section strength at any point, which meq-,, "if the
structure can stand up, it will."

h. The upper-bound theorem: The member strength must be reached
at a sufficient number of sections to permit collapse, which
means, "if the structure can collapse, it will."

8. A correct solution must satisfy both lower- and upper-bound

theorems. These aspects, equilibrium, member strength, and structure

strength, will be considered separately in the following paragraphs.

Equilibrium

9. Two distinct loading conditions must be considered here: the

radial jack loads applied during the WES tests, for purposes of verification

of the approach, and the loads prescribed in Engineer Manual (EM) 1110-2-2902

(Headquarters, Department of the Army 1969) which are to be used for the de-

sign of culvert sections. The former of these two loading conditions can be

handled as a special case of the latter, as shown in the next paragraphs.

:0. The loading (EM 1110-2-2902) (referred to herin as EM loading) con-

sists of uniform vertical pressure, w , and uniform lateral pressure,

6
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a. WES test specimen

y

wk

b. Collapse mechanism

Figure 1. Plastic ring collapse
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k • w , as shown in Figure 2. The radial, or normal pressure, variation on

the ring due to both loads is, according to calculations shown in Appendix A,

= [(1 + k) - (1 - k) cos 20] (1)

where

PN = radial pressure acting on unit length of ring

k = ratio of lateral earth pressure to vertical earth pressure

and the tangential, or shear, traction on the ring is

T= (I - k) sin 20 (2)

where

PT = tangential traction acting on a unit length of ring

w = uniform vertical pressure

The distributions of tle load components along the ring are shown in Figure 3.

Y

Figure 2. Loads

11. The vertical and horizontal resultants of the radial pressure,

,on the quarter ring and, therefore, the axial forces, Ns and Nc , on

the springing and crown sections, due to the radial pressure only (the test

Y8



P N

Figure 3. Surface tractions

loading) are, by integration of the Y- and X-components of pN

NN  wR8

Np =- (2 + k) = - P (2 + k) (3a)
sp 3 3 Tr cr

NN = - (2k + 1) - P (2k + 1) (3b)
cr 3 3 cr

where

N = internal thrust at springing acting on a cross section of width

b , pounds/foot

R = outer radius of conduit

P = concentrated crown load in a 16-point test loading, poundscr

1?. In Equations I through 3, the concentrated crown load P for thecr

16-point test loading is calculated by multiplying the distributed load w by

the tributary length 27R/16 .

13. The vertical and horizontal resultants of the tangential tractions,

PT 9 on the quarter ring and, therefore, the axial springing and crown forces,

due to these shears, are

NT =wR

N T - (0 - k) (4a)
sp 3

9



NT = wR
cr - (k - i) (4b)

where
T = tangential component of N or N

sp cr

N = internal thrust at springing acting on a cross section of width
cr b , pound/foot

The sums of Equations 3 and 4 are the axial forces at these sections under

EM loading

NN + NT  = wR (5a)
sp sp

NN + NT  = k • wR (5b)
cr cr

14. Referring to the free body of Figure 4a of the quarter ring under

loads set forth in EM 1110-2-2902, mom'ent equilibrium requires that

Mcr -wR2

M + M = (I - k) (6)
cr sp 2

where

M = internal moment at crown acting on a cross section of width b
foot pounds/foot

M = internal moment at springing acting on a cross section of width
b , foot pounds/foot

For radial components only, applied in the test loading, moment equilibrium of

the free body of Figure 4b requires that

wR
2

M +M - (I - k) = P R(I - k) (7)
cr sp 3 3 cr

15. Any solution, elastic or inelastic, must satisfy Equations 3 and 7

for the test loading, and Equations 5 and 6 for the loading specified in

EM 1110-2-2902.

10



WR

J Cr

Ncr g kw

-" -X "-0"- 7a X

a. EM loading b. Test loading

Figure 4. Free bodies

Section strength

16. The strength of reinforced concrete sections of specified materials

under ayial force and moment, as in these rings, can be determined by well

known methods of structural mechanics, assuming uniaxial stress states and

plane sections (Park and Paulay 1975). The effects of initial curvature of

these rings, which leads to a nonlinear strain distribution across the sec-

tion, have been considered for these rings (Chiarito and Mlakar (1984)). It

was concluded that initial curvature is a minor effect which can be ignored in

the analysis of these rings.

17. Such analyses lead to strength interaction envelopes as shown in

Figure 5a covering section strength under conditions ranging from pure axial

force to pure bending. The balance point separates the regime in which fail-

ure is initiated by brittle comprtssive concrete crushing, labeled "compres-

sion failure," from the regime where yielding of the tension steel precedes

concrete crushing, or "tension failure."

18. The upper-bound theorem states that collapse will occur when the

moment-axial force combinations at the crown and springing sections satisfying

equilibrium lie on the strength envelope of Figure 5a.

11



N N

COMPRESSION FAILURE

e

BALANCE POINT

TENSION
FAILURE

M Lu

a. Strength envelope b. Ultimate curvature

Figure 5. Section strength and ductility

19. For the specimens tested under the WES program, such interaction

curves are available (Wright and Chiarito 1987). For design purposes, it will

be necessary to establish dimensionless strength curves, similar to those pro-

vided by the American Concrete Institute (ACI) (1985).

Ring strength

20. This study considers only the plastic strength of rings under the

radial test loading, since the current results will serve only the purpose of

verification by comparison with results of the WES test series. Procedures

for loading (EM 1110-2-2902) will be entirely analogous.

21. According to the upper-bound theorem of plasticity, a proper solu-

tion for the collapse load must satisfy equilibrium and strength conditions.

22. Equilibrium requires, from Equations 3a and 3b,

8

N m- (2 + k)P (8a)
sp 3 7r er

8

N - L (2k + 1)Pcr (8b)
cr 31r c

12



where P is the force exerted by the crown jack of the 16-jack test appara-cr
tus. Collapse loads, discussed by Wright and Chiarito (1987), are given in

terms of Pcr
23. Moment equilibrium according to Equation 7 requires that

8
M + M =-- (I - k) P R (9)
sp cr 3 Tr cr

24. The axial force N and the moment M , at the springing, andsp sp

N and M , at the crown, must fall on the strength envelope at the in-cr cr
stant of plastic collapse. Satisfaction of these conditions requires a trial-

and-error procedure, for which the following average quantities are

introduced:

Navg * (Np + Ncr) (10)

where N is average of internal thrust at springing and crown acting on
avg

cross section of width b , pounds/foot, and

M 1M +avg 2 sp cr

where M is average of internal moments at springing and crown acting on aavg

cross section of width b , foot pounds/feet.

25. Substituting Equations 3 and 7 into Equations 10 and 6 and dividing

Equation 11 by Equation 10, we get the average eccentricity (e avg)

M 1Il k
e = avg •k R (12)
avg Navg

where e is eccentricity based on average of moment and thrust values atavg

crown and springing.

26. Equations 3 and 10 permit expression of the axial forces and the

crown load at collapse in terms of the average force N :
avg

N 2Z2 + kN
sp = k-l-+ Navg (13)

13



N 2t2k + I N(4
Ncr (k+1N (14)

P N (15))av

cr 24(1 )Nk g (15)

27. With given strength envelope, Equations 12 through 15 permit solu-

tion for the collapse load by graphical or iterative means, as is illustrated

in the cases listed in the following paragraphs.

Straight-line strength envelope

28. If the relevant region of the strength envelope is a straight line,

as shown in Figure 6, these steps should be taken:

a. Draw the radial line of slope I/e , using Equation 12, from

the origin and intersect it with the straight-line strength
envelope at point (Navg , M avg). The force-moment combina-

tions at springing and crown, as calculated from Equations 11,
13, and 14 and shown in Figure 6, lie on the linear strength
envelope.

b. Compute the collapse load P by Equation 15.- cr

Curved strength envelope

29. In the more common case where the strength envelope is curved

(Figure 7), an iterative approach is needed, and these steps should be taken:

a. Draw the radial line of slope 1/e from the origin, using

Equation 12. The point (Navg , M avg) will lie at an unknown

location along this line, not necessarily on the strength
envelope. The points (Nsp , M sp) and (N cr, M cr) form the

intercepts with the strength envelope of a straight line with
midpoint on the point (Navg , M avg). These intercept points

must satisfy two conditions:

(1) N-coordinates must satisfy Equations 13 and 14.

(2) M-coordinates must be equidistant from the Mavg
coordinate.

b. Assume a point (Navg , M avg) on the radial line of slope

i/e drawn in step a. Mark the points on the strength
avg

envelope satisfying condition a, and connect them with a
straight line. If this line passes through the point (N

M avg), condition b is also satisfied and the collapse load Pcr

can be determined by Equation 15.

14



N STRENGTH S

eavg

Navg

Ncr c

m avg Mcr

Figure 6. Ring strength, straight--line strength envelope

N

Navg

Ncr

M
msp Mcr

Mavg

Figure 7. Ring strength, curved strength envelope

15



c. In the more comon case when the straight-line segment con-
necting the intercepts does not pass through the point (Navg

M avg), take the intersection with the radial line of slope

i/e as the new point (N , M ), and repeat step b.

d. Repeat step c to convergence, and determine the collapse load
P by Equation 15.
cr

30. One or two iterations are usually sufficient for engineering accu-

racy. A convenient way of satisfying the equilibrium conditions of step a and

strength conditions of step b graphically is illustrated in Figure 8, which

uses radial lines of slopes NspINavg /e avg and NcrINavg 1/eavg to

satisfy Equations 13 and 14.

NNsP

STRESS POINT AT SP Navg eavg

3eav1

AVERAGE STRESS POINT 2e

3

2 Navg eavg

STRESS POINT AT cr

M

Figure 8. Graphical solution technique

Example 1

31. Model 2-1 of the WES test series (Wright and Chiarito 1987), is a

thick ring under a load of ratio k = 1/3 . The strength envelope shown in

Figure 9 is based on straight-beam theory. All graphical and numerical

16



100 -N,

N0 a v g a v g

60
o 

Nsp 
1

, j " avg eavg

Ncr 40-

0 
I M, k-in

0 20 40 60 80 100
Msp Mcr

R = 7.47 in. Equation 12: e = 1.25 in.
avg

k = 1/3 Equation 13: N = 1.167 Nsp avg N

Equation 14: N = 0.833 N N = 1.40
cravg cr

Equation 15: P = 0.589 Ncr avg

Nk Nk Nk pk
avg SP- cr

48 56.0 40.0

49 57.2 40.8 28.8

Figure 9. Strength analysis, specimen 2-1,
straight-beam strength envelope
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calculations are shown in Figure 9. Only one Iteration is required to attain

rhe collapse load to within an accuracy of 0.1 kip.*

Separate strength

envelopes for crown and springirg

32. In the WES study (Wright and Chiarito 1987), curved-beam theory was

followed to evaluate the section strengths, leading to different strength

envelopes for the springing (tension outside) and the crown (tension inside),

as shown in the following example. The same approach as in the preceding case

applied here, but now using the appropriate strength envelope for each

section.

Example 2

33. Model 2-1 of the WES test series is again considered, now using the

to different strength envelopes for springing and crown sections given by

Wright and Chiarito (1987), and shown in Figure 10. Again, only one itera-

tion (Figure 10) is needed.

Comparison of results of

straight- and curved-beam strengths

34. Comparing the results of the preceding examples, using the single

straight-beam strength envelope, the failure load is P = 28.8 kips; andcr

using the two separate curved-beam strength envelopes, the failure load is

P = 29.2 kips, a difference of 1.4 percent is found. It appears that usecr

of section strength based on straight-beam theory is adequate for design pur-

poses, as already predicted by Chiarito and Mlakar (1984). Further analysis

and design procedures will be based on single envelopes based on conventional

straight-beal reinforced concrete theory.

Ductility

35. The plastic theory presumes that the hinging sections have enough

rotation capacity to permit redistribution of internal forces without prema-

ture brittle failure. This requires that the available ductility equals or

exceeds the rotation required to permit formation of the last hinge leading to

collapse.

* A table of factors for converting non-SI units of measurement to SI

(metric) units Is presented on page 3.

18



N, k

Np

Navg eavg

CROWN 1

SPRINGING Ncr
60 - N avg eavg

Ncr 40

20

0 1- 1 I _ M , k-in.

20 40 60 80 100

R - 7.47 in. Equation 12: e = 1.25 in.avg

k = 1/3 Equation 13: N = 1.167 N
sp avg

Equation 14: N = 0.833 Ncr avg

Equation 15: P = 0.589 Ncr avg

Nk Nk Nk pk

avg sp cr cr

49 57.2 40.8

49.5 57.7 41.2 29.2

Figure 10. Strength analysis, specimen 2-1,

curved-beam strength envelopes
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36. The available ductility at a section is plotted in Figure 5b in

terms of the ultimate curvature, or rotation capacity per unit length. It

will be discussed further in the next section.

37. The rotation demand at each hinge can be computed by a series of

piecewise-linear analyses permitting determination of the plastic hinge rota-

tions to be compared to the available rotation capacity. In the rings under

doubly symmetrical loading, plastic hinges may occur at crown and springing

sections. A series of elastic analyses, as outlined in Part III, will lead to

load-deflection and load-hinge rotation curves (Figure 11). These are the

hinge rotations which are to be compared to the available rotation capacity.

Results of such analyses are presented later.

w w
PLASTIC ROTA TION

WP or-1

PLAS TIC HINGE @ Cr #1

Wy PLASTIC HINGE @ Sp TOTAL ROTATION

I

0pLASTIC

PLASTIC ROTATION @ Sp OTOTAL
DURING TMUS RANGE

a. Load deflection b. Load rotation

Figure 11. Piecewise-linear analysis

Rotation capacity of hinges

38. The ultimate curvatures shown In Figure 5b were calculated from the

strain distribution across the critical section at the instant of compressive

concrete crushing due to attainment of the ultimate compressive strain " ,U

assumed at c = 0.003 Thus, assuming plane sections, . E /c , where c
u u u

20



is the distance from the extreme compression fiber to the neutral axis. This

rotation capacity per unit length is to be integrated over an effective hinge

length to obtain the available rotation capacity of the hinge.

39. A number of empirical methods are available to this end (Park and

Paulay 1975), based on tests carried out on straight beams under various

moment gradients. The applicability of these results to the case of initially

curved members, such as these rings, may be doubted. The presence of a bi-

axial stress field due to radial stresses, along with diagonal tension, is

likely to have a severe impact on the ductility, as evidenced by many of the

failure modes of the rings in the WES test program.

40. Here, based on observation of hinging modes in the WES test speci-

mens, a hinge length equal to the section depth h is assumed, so that the

rotation capacity of the hinge will be

e u * -h (16)u U

where

e - rotation capacity

Ou . ultimate cuirvature

A special test program may be needed to verify and improve on this

formulation.

Rotation demand

41. Results of piecewise-linear analysis for the test loading and for

the EM loading will be presented separately. Details of the analysis are

presented in Part III.

Test loading

42. Elastic analysis of the closed ring under test loading (pT - 0), as

shown in Part IIT, results in the springing and crown moments:

wR2 4
M 6 (1 - k) -- P R(1 - k)sp - 31T cr

(17)

M y R2  4
cr -+ - (1 - k) - + L PrR(l - k)

that is, moments at the critical sections are equal in magnitude, a result
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which seems surprising but is explained in Part III by symmetry of structure

and antisymmetry of loading.

43. The axial loads at these critical sections due to the test load are

given by Equation 3 as

N wR 8
Np w- (2 + k) = (cr(2 + k)
sp 3 rc

(18)

NN wR 8
N = - (2k + 1) = 8 P (2k + 1)
cr 3 IT c r

These different axial forces will affect the section strength so that, In

spite of the equal moments of Equation 17, unequal section strengths will lead

to sequential, rather than simultaneous, hinge formation, as shown in Fig-

ure 11. The specifics depend on the shape of the strength envelope, so that

each ring will require separate calculation of its ductility demand.

44. For instance, in Figure 12, specimen 2.1 shows the same strength

envelope as in Figure 9, along with the stress ppths of springing and crown

sections. The strength envelope is first reached at the springing, under

N = 55 kips, corresponding to P = 27.9 kips. Plastic rotation of thesp cr

springing section will occur as the applied load increases from the elastic

limit load P = 27.8 kips to the collapse load computed in Figure 9 ofcr

P = 28.8 kips, and is computed in Part III ascr

R2

O- (1 - k) (19)
sp cr El 3

According to the calculations of Part I1, this results in A@ = 0.20

10- 3 rad. The rotation capacity computed is 3.5 • 10- 3 rad.

45. The movement of the stress point for the springing section along

the strength envelope after hinging indicates that, contrary to the analysis

assumption, AM j 0 . This secondary effedt is neglected in the engineering

approach.

46. It appears that, for this ring, the rotation capacity vastly

exceeds the demand, so full redistribution might be expected, and the collapse

load based on plastic analysis might be reallstic. In fact, the observed

failure load (Wright and Chiarito 1987) of this ring was 38.5 kips, or
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Figure 12. Piecewise-linear stress paths at springing

and crown sections
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34 percent stronger than predicted. It appears that the strength envelope

computed by Wright and Chiarito (1987) is conservative.

EM loading

47. The EM loading, according to the elastic analysis of Part III,

again results in moments of equal magnitude at springing and crown:

M = - wR2  - k) (20a)
sp (1

M = +wR 2

Mcr = + (I - k) (20b)

a conclusion which results from the antisymmetry of loading.

48. The axial loads at these critical sections due to the EM loading

are given by Equation 5:

N = wR (21a)
sp

N = k - wR (21b)
cr

and these different axial loads will affect the section strength so that in

spite of the equal moments given by Equations 20a and 20b, unequal section

strengths will lead to sequential hinge formation. The calculations in

Part III indicate a rotation demand at the springing section of

Ae Aw 3 R "- (I - k) (22)
sp Fl 6

49. The steps necessary for comparison of rotation capacity and rota-

tion demand are identical to those considered for the test loading.
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PART III: ELASTIC ANALYSIS AND DEFORMATIONS OF RINGS

Introduction

50. In Part II it is noted that elastic analysis is necessary for duc-

tility calculations, even if not for perfectly plastic strength determination.

Further, with the availability of efficient computer programs for elastic

analysis of arbitrary structures (Harter, Bricher, and Wilson 1980), the

earlier work done on elastic analysis and design of culvert shapes (Anderson,

Haelsig, and Reifel 1966), and the precedent set by ACI (1983) in its strength

design method (which will be discussed further in Part IV), it seems appro-

priate to explore elastic analysis of these rings.

51. In this part, the prismatic elastic rings under radial (test) load-

ing and EM 1110-2-2902 loading (Headquarters, Department of the Army 1969) are

considered to stress the simplicity of the solution of this case and to make

available results for use in Part II (ductility), Part IV (comparison), and

Part VI (shear strength).

Elastic Analysis of Rings Under Doubly Symmetric Loads

52. For this analysis, the consideration is a circular ring subjected

to load which is symmetric about the X- and Y-axes shown in Figure 13a for the

first quadrant. This load can be decomposed intr a rotationally symmetric, or

hydrostatic, part (Figure 13b), and the remaining part, symmetric with respect

to the X- and Y-axes or antisymmetric with respect to the 45-deg axes (Fig-

ure 13c). The latter will be called the "antisymmetric part" in the text that

follows.

53. Due to the hydrostatic part, moment and shear are zero. The axial

force due to this loading is constant:

N wR + k) (23)
Hydro 2 (1

54. Due to the antisymmetric part, the moments at the springing (6 = 0)

and at the crown (0 = 90*) must be equal in magnitude and opposite in
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I

- Y

PTotal PHydrostatic + PAntisymmetric

For test loading:

p = M (I + k) - (I - k) cos 2e] w (I + k) (1 - k) cos2 2 2

For EM loading:

P 2 ( + k) - (I - k) cos 2e] = (I + k) - (1 - k) cos 20

= ( - k) sin 2e = 0 + H (I - k) sin 20

Figure 13. Decomposition of load
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direction, that is, M = Mcr Invoking the equilibrium Equation 7 for testsp c
loading, it follows that

M + M -2M -2M -R3
cr sp cr sp T (1k)

or

M =M wR2cr sp 6 (1 - k) (24)

Similarly, Equation 6 for EM loading results in

M =M -wR 2

cr sp 4 (1-k) (25)

55. With these redundants determined by considerations of equilibrium

and symmetry, the internal forces along the ring can be found by statics

alone. Using appropriate free bodies, the following result (Anderson, Haelsig

and Reifel 1966):

Test loading:

N = L- I + k) + 4 (1 - k) cos 2e (26)

wR
V -- (I - k) sin 26 (27)

M wR2

M ( - k) cos 2e (28)

EM loading:

N [(1 + k) + (1 - k) cos 20] (29)
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= - ( - k) sin 28 (30)

wR
2

M = 2 (1 - k) cos 2e (31)

In both cases, because of antisymmetry, the maximum shear occurs at

8 45 deg, and maximum moments occur at 8 - 0 deg and 6 = 90 deg.

Plastic Hinge Rotation

56. It will be recalled from Part II that the calculation of the duc-

tility demand at a plastic hinge requires a piecewise-elastiL analysis of the

structure. To this end, the computation of the rotation of a plastic hinge at

the springing section of the ring due to an increment Aw of test loading

will be demonstrated.

57. Assume a perfectly plastic set of hinges at the springing sections,

with the remainder of the ring perfectly elastic of flexural stiffness El

(Figure 14) with only flexural deformations considered.

58. The hinge rotation is computed by the principle of virtual forces

(Cerstle 1974):

r/2 7r/2

s 2 f •mds = 2 f M Rde (32)sp E RO(2

e=0 0

where m is nondimensionalized moment in which the real curvature W = /El

is due to the applied increment of load on the ring with hinges, and m Is

due to a pair of virtual unit moments at the hinge:

AwR
2

I= 6- (1 - k)(1 - cos 28)

m 1
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Figure 14. Computation of hinge rotation
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59. Substituting these values into Equation 32 and integrating results

in

= w 3  
7 k R2  4

p E * • (I - k) = AP Ty E I - k) (33)

60. Similar calculations for the EM loading result in plastic hinge

rotations due to a load increment Aw of

A wR 3  57r

0 E 2 _ (I - k) (34)

61. Sample calculations for the EM loading are shown in Appendix B.

Elastic Strength of Rings

62. Strength design according to ACI (1983) combines elastic structure

analysis as outlined in this part with ultimate capacity of sections as given

by the strength envelopes shown in Part II. Critical sections will be at the

springing or the crown section, depending on loading and ring characteristics.

In Figure 12, for instance, section capacity under increasing load is first

reached at the springing, under a combination of axial load N = 55 kips,sp

moment M = 60 kip/in. According to strength design philosophy, this con-sp
stitutes the structure strength. Any force redistribution due to plastifica-

tion is neglected.

63. The radial lines defining the force paths at springing and crown

have slopes computed from the results of the Preceding elastic analysis. For

test loading from Equations 3a and 3b and 24:

Ssp I -k(5)
sp N 2(2 + k)sp

where e is eccentricity at springing, and
sp
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H
cr I - k

cr 2(1 + 2k) R (36)
cr

where e cr is eccentricity at crown. For EM loading from Equations 5a and 5b

and 25:

M

e W sp - 1 - k - R (37)
sp N 4sp

M
e cr 1 I -k R (38)

cr

64. Application of the ACI (1983) strength design method to the analy-

sis of the WES test specimens is illustrated in Part IV.
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PART IV: VERI1FICATION OF ANALYTICAL PREDICTIONS

65. In Part II, the plastic method of analysis for strength of rein-

forced concrete pipes was stressed, while the elastic method was outlined in

Part III. In Part IV, a more general look at the various alternatives for

strength determination will be taken to arrive at specific recommendations for

analytical approaches. Following this, the results of these recommended analy-

ses will be compared with the results of the WES ring tests for verification

to arrive at conclusions regarding the validity of these approaches.

Types of Ring Analysis

66. Strength prediction of reinforced concrete culvert sections depends

in any case on the equilibrium equations, Equations 1 through 15. Beyond this

the section strength and the structure strength can be defined and combined in

different ways, as discussed in the next paragraphs.

Section strength

67. The concrete stress-strain curve, shown dashed in Figure 15, can be

idealized in different ways:

a. The ascending compression branch, of peak strain
E 0.002 in./in., is represented by a linearly elastic curve,
as shown in Figure 15a.

a0

8 .8 85 c

/ 9 9

/ /
I i I

0.002 0.0005 0.002 0.00045 0.003
'EEL =eu = Eu

(a) Linearly (b) Strength (c) Strength
Elastic Gu = 0.002 E, = 0.003

Figure 15. Concrete stress-strain relations
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b. The compression branch is represented by a Whitney-type rectan-
gular stress block, of c - 0.002 . Assuming a parabolicu

dashed stress-strain curve, equilibrium considerations deter-
mine the rectangular stress block constants as a 8/9
S= 0.75 , as shown in Figure 15b.

c. The conventional ACI-Whitney stress block of c = 0.003

a - 0.85 , and 0 - 0.85 , as shown in Figure 15c.

68. Concrete tension strength is in any case ignored, and steel is con-

sidered elastic, perfectly plastic of yield strength f . Conventional flex-Y
ural theory assuming plane section, and using the concrete properties of Fig-

ure 15 will lead to three different strength envelopes as shown in Figures 16

and 17. The one labeled "Elastic" defines the section strength by attainment

of concrete strain e = 0.002 or steel stress f . No stress redistribu-
u y

tion is considered. This is the allowable or working stress approach used by

ACI prior to 1963. Strength theory using the rectangular concrete stress

block of Figures 15b and 15c leads to the strength envelopes labeled

c = 0.002 and e = 0.003 in Figures 16 and 17. We see relatively littleU U

difference between the two, whereas the elastic limit curve indicates vastly

reduced strength.

Structure strength

69. Two criteria for the determination of the structure strength are

considered:

a. The elastic method defines the structure strength by attainment
of the section strength at any one section, as already covered
in Part III and Figure 12. Elastic analysis of rings under
doubly symmetrical loading predicts equal moments at the
critical crown and springing sections.

b. Plastic, or limit analysis, presumes redistribution of forces
so that ring collapse requires attainment of the full section
strength at both crown and springing sections, as outlined in
Part II.

70. Figures 6 through 12 show techniques for determination of structure

strength according to both methods. The different approaches to the determina-

tion of section and structure strength can be combined in different ways, as

shown in Table 1.

Ring strength

71. In order to assess the effect of the different approaches on the

prediction of ring strength, we have followed the techniques of Parts II

and III to predict the strength of two specimens of the WES test series: the
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Table 
1

Methods of Ring Analysis

Structure Strength; Method

Section Strength Elastic Plastic

Elastic Elastic analysis Not reasonable

Plastic Strength analysis (ACI 1983) Limit analysis

thick Model C 2-1 (R/h = 1.5) and the thin Model C 8-2 (R/h = 4.2). The

graphical computations are shown in Figures 15 and 16, and the results for the

test loading are summarized in Table 2.

72. The following observations can be made from the strength envelopes

of Figures 16 and 17 and from the results of Table 2:

a. The effect of ultimate concrete strain C is minor when
rectangular stress blocks are assumed. u

b. Strength computed by linearly elastic theory is much less than
that according to strength theory for compression failure. The
difference is insignificant for tension failure. It therefore
appears that linearly elastic theory will not result in rings
which are notably safer against cracking than strength theory.

c. The difference between the ring strengths computed according to
strength theory and according to limit analysis is relatively
minor.

d. All strength predictions are conservative for Model C2-1, which
failed in compression. Test strength of Model C8-2 is suspect
because of unknown f and possible inaccuracy of steel

y
placement in the very thin section.

Table 2

Comparison of Predictions and Test Results

Ultimate Crown Jack Load, kips
Strength Limit

Model Elastic c = 0.002 c = 0.003 E = 0.002 E = 0.003 Test
Model Elastic u u u u Test

C 2-1 27.7 32.5 32.2 33.6 33.6 38.5

C 8-2 5.0 5.1 5.1 5.8 6.2 5.2

73. On the basis of these observations, it appears that the well known

strength approach according to ACI (1983), using c = 0.003 , or limit
u
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analysis using the same strength envelope, may be appropriate design methods

for these rings. Purely elastic analysis assesses the ring strength too low.

Limit analysis may require force redistributicn involving tensile concrete

cracking which may be undesirable in a pipe. It may also be observed that

with these curved strength envelopes, the strength theory, which requires

matching internal forces with strength at only one critical section, is con-

siderably simpler than limit analysis, which requires this match at two criti-

cal sections.

74. In the systematic comparison between predicted and observed

strengths of the WES rings, the strength and limit analysis based on

E = 0.003 will be used.
U

Comparison of Predictions and WES Test Results

75. in this section, predicted strengths for the 18 specimens tested in

F the WES series calculated according to strength and limit analysis are com-

pared to observed failure loads as reported in Tables 5 to 7 of Wright and

Chiarito (1987). All of these tests terminated in flexural failure: the

single diagonal tension crack reported in Model C2-3, Table 5 (Wright and

Chiarito 1987) seems to have occu-red well after attainment of the full flex-

urrl strength.

76. Several caveats are indicated in judging the validity of the

comparisons:

a. In most of the specimens, predominantly the thin ones, actual
applied load distribution varied significantly from that speci-
fied (Gerstle 1985). Applied loads always tended to readjust
themselves toward hydrostatic compression, that is, the actual
value of k at failure was always larger than that specified.
In our calculations, we used the actual k value at failure
rather than the specified k value.

b. The yield strength of the reinforcing wire DI and D3 varied
significantly according to test data,* but no correlation is
available between strength and specimen. Computations for the
affected specimens labeled with asterisk in Table 3 were car--
ried out for maximum and minimum reported yield strengths;
these values therefore constitute upper and lower bounds on

* US Army Engineer Waterways Experiment Station. "WES Laboratory Data:

Steel Reinforcing Report," Data Sheets dated 17 Feb 1984, 21 and 25 Jun
1983, and 7 and 12 Jul 1983, Vicksburg, Miss.
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strength. The ratios of strengths given in Table 3 for these
specimens are based on calculated average values.

c. The specimens of R/h = 4.1 were of thicknesses ranging from
2.00 to 2.25 in., with concrete cover about 1/2 in. thick. For
these specimens, accuracy of steel placement becomes very crit-
ical; any slight deviation from values recorded in Table 1 of
Wright and Chiarito (1987), which were used in the calculb-
tions, would lead to faulty predictions. It is quite possible
that the gross overestimation of strength for Models C 8-1 and
C 9-1 was due to this effect. Table 7 of Wright and Chiarito
(1987) reported four hinges for these thin rings; therefore,
plastic theory should apply.

77. Results of the comparison study are listed in Table 3 where ob-

served strengths, predicted values of the jack load at the crown, P ,cr

according to strength and limit analyses, and ratios of these values are given

for all test specimens.

78. The same information is shown graphically in Figure 18, where the

LEGEND
OBSERVED STRENGTH ---- STRENGTH ANALYSIS
PREDICTED STRENGTH - LIMIT ANALYSIS

1.4

1.2 -

0.8

0.6

0.4 -

0.2 -0 - - I - - - - - - - - - - - -

0
SPECIMEN 1-1 2-1 2-2 2-3 3-1 4-1 4-2 5-1 5-2 5-3 5-4 6-1 6-2 7-1 8-1 8-2 8-3 9-1

Figure 18. Comparison of predicted and observed strengths
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ratio of observed to predicted strength is plotted for all specimens for both

strength and limit theories. A value of unity indicates perfect agreement be-

tween theory and test result. Values above unity indicate a conservative, or

safe, prediction, while values below unity denote an unsafe prediction.

79. It is noted that for the thick rings, predicted strengths are on

the safe side, by factors up to 40 percent when calculated by strength method,

and up to 30 percent when computed by limit analysis. Grave inconsistencies

involving overestimated strength of up to 30 percent are noted for the thin

rings. As mentioned before, inaccuracies due to unfavorable model scale could

account for such inconsistencies.

Influence of Experimental Inaccuracies on Ring Strength

80. Relatively wide deviations were observed between predicted and mea-

sured strengths for the WES ring specimens C 8-1, 8-2, 8-3, and 9-1, as shown

in Table 3 and Figure 18. These were all thin rings with R/h ratio ranging

from 3.9 to 4.5, and thickness h between 2.00 and 2.25 in.

81. Among factors possibly responsible for the mismatch are:

a. These thin rings required great accuracy in their preparation.
Slight dimensional variations of the cross section might result

in considerable strength variation.

b. There was uncertainty about the steel strength. Reported yield
strength of the annealed wire varied from 58.6 to 76 ksi.

c. The actual load distribution applied to these relatively flex-
ible rings deviated considerably from the specified
distribution.

82. The relative importance of these variables has been assessed to

understand possible reasons for the discrepancies. Because of restrictions

imposed on the extent of this study, we have considered only one specimen,

C 8-1, for which the ratio of measured to predicted failure load was 0.83

according to strength theory, and 0.76 according to limit analysis.

83. First, the effect of the cross-sectional parameters on the section

strength has been considered: Specimen C 8-1 had the cross-sectional dimen-

sions as specified in Table 1 of Wright and Chiarito (1987) and shown as

insert a in Figure 19, indicates that the reinforcing cage had an eccentricity

of 0.16 in., or about 3/16 in., with respect to the concrete section. The

corresponding strength, assuming an average yield strength of 68.2 ksi (WES
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Laboratory Data Sheets*), is shown by the strength envelope labeled I in Fig-

ure 19. Assume that the reinforcing cage is inserted in the forms with the

opposite eccentricity, shown as insert b in Figure 19; that is, at 5/16 in.

from that specified, the strength of the section will be as indicated by

strength envelope 2 in Figure 19. The difference is no more than the scatter

which might be expected among replicates.

Effect of Different Yield Strengths

84. The effect of different yield strengths is shown by envelopes 3

and 4 in Figure 19. Envelope 3 results from assuming the lowest measured

yield strength of 58.6 ksi, and envelope 4 results from assuming the highest

value of 76 ksi. As might be expected, the difference shows up only in the

region of tension failure. Again, the difference between envelopes 3 and 4 is

moderate for the combination of axial force and moment expected in these

rings.

85. Consider next the effect of load distribution on the ring strength.

The recorded load distribution for specimen C 8-1 is plotted for increasing

load to failure In Figure 20. It is seen that, as with the other thin rings,

the actual load distribution varies considerably from the specified value of

k = 1/3 . Our earlier predictions were based on the value of k = 1/2.02

near failure. Another possible assumption might be an average value of

k 1/2.5 , also shown in Figure 20.

86. The crown section of the ring is critical under all of these load

ratios. The eccentricity at this section was computed from Equation 35, and

the axial force at this section by intersection of the eccentricity lines with

the strength envelopes (Figure 19). The crown jack load was determined by

Equation 15.

87. Following this procedure, the failure loads at the crown were com-

puted for three eccentricity lines and four strength envelopes, then entered

In Table 1.

88. To assess the sensitivity of the failure load to the different

parameters, Table 4 presents the ratio of the largest to the smallest load for

different cross sections while holding the load distribution constant. Also,

* US Army Engineer Waterways Experiment Station, op. cit.
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the same ratio is recorded for different load distributions while holding the

cross-sectional properties constant. The variation of cross-sectional proper-

ties causes a maximum variation of strength of 26 percent, while the variation

of !..d distributio" &:er a rangc of credible vlues cases s-e-,:.bth "aria-

tions of between 63 and 91 percent. The load distribution dominates in its

significance.

Table 4

Sensitivity of Failure Load

Strength Envelope r max P Experimental P Experimental
P cr' kips Pcr cr cr

K 1 2 3 4 Pcr min Pcr max P crmin

1/2.02 9.0 9.3 8.6 9.6 1.12 0.76 0.85

1/2.50 6.1 6.5 5.9 7.2 1.22 1.01 1.22

1/3.00 4.7 5.5 4.7 5.9 1.26 1.24 1.55

P maxcr 1.91 1.69 1.83 1.63
P min
cr

89. Table 4 also presents the ratios of the test strength of 7.3 kips

of specimen C 8-1 to the predicted maximum and minimum strength for each value

of load distribution. Observe the scatter around the value of unity denoting

perfert prediction. The strength of these rings is extremely sensitive to the

load distribution. A slight variation from the specified value will greatly

affect the ring strength. The deviation of the applied loads from those

specified during testing may account for the bulk of the difference between

predicted and test results for these thin, flexible rings. Inaccuracies in

construction and material strength may have played a lesser role.

90. In a larger sense, these flexible rings have a remarkable ability

to readjust the load to a more favorable distribution, even under presumed

load control, as in the WES tests. Similar behavior might be expected of

flexible pipe in the ground. Analysis which includes soil-structure interac-

tion will be needed to carry out realistic predictions of ring strength under

such conditions.
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PART V: DESIGN OF CIRCULAR REINFORCED CONCRETE PIPE CULVERTS

91. Following the observations of Part TV, we will base the design of

reinforced concrete pipe culverts on the strength approach according to ACT

(1983), which i,-,".e l *ttmate seCLion stiengtn with elastic structure analy-

sis. Other combinations of section and structure strength calculations, as

outlined in Part IV, are possible but will not be pursued here for the sake of

conciseness.

92. In the following design procedure and examples, only the

EM 1110-2-2902 loading (Headquarters, Department of the Army 1969) will be

specified. Other doubly symmetric loadings are possible but will not be con-

sidered in following text.

Longhand Design Method

93. The longhand design method outlined here is based on the following

premises:

a. Known, doubly symmetric applied loads, such as the EM 1110-2-

2902 loading (Headquarters, Department of the Army 1969).

b. Nondimensional section strength envelopes plotting axial force

versus moment applied jointly are available.

c. Equilibrium of axial force and moment at the critical crown and
springing sections can be represented by radial lines of slope

I/e , as demonstrated in Figures 6 through 10.

d. Shear strength and possibility of slabbing failure are to be

checked separately.

Strength Envelopes

94. For design purposes, the strength envelopes as shown in Figures 5

through 10 are nondimensionalized in terms of the dimensionless axial force

n = N/(f'bh) , the dimensionless moment m - M/(f'bh2) , the reinforcing index
cc

* - (A f )/(bhf') , and the cross-sectional parameter y (h - 2d')/h
S y c

where

V - compressive strength of concrete
c
b - width of section

h = overall depth of section

As - area of flexural reinforcement in tension
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f . yield strength of reinforcing steelY

y = dimensionless cross-sectional parameter used in development of
nondimensional strength envelope

d' = distance from extreme compression fiber to centrcid of compression
reinforcement

95. A set of dimensionless strength envelopes for values of y ranging

from 0.5 Zo 0.8 is shown in Figures 21 through 24. Since the section

strength is sensitive to the value of y , careful interpolation is necessary

between strength values. These curves are valid only for rectangular cross

sections of equal reinforcing on both sides. 'Note that in these curves, W

is defined as the total reinforcing index. The tensile reinforcing index would

be half this value. No material strength factor is contained in these curves.

Elastic Analysis

96. For the EM loading specified in the following examples, the results

of equilihrium Equation 5 and of elastic analysis Equation 25 are nondimen-

sionalized as:

N
ns - = w (39)sp f'bh fbhc c

N

ncr = = k wR (40)
crbh

c c

M MwR

m m a cr = (I - k) wR2 (41)
bh f2  bh 4f'bh2

c c c

97. From these axial forces and moments, the slopes of the nondimen-

sional radial eccentricity lines can be established for springing and crown:

h np 4 1
L 4(42)

e m 1 - k CR/h)sp sp

h n cr 4k 1
We c r I - k Rh) (43)
cr cr

46



LLfl

rqI

cir

L~qOL/N

3 47



0

0,

48-



(31

Q

C-)

00

4q,31o

49/



LO

09

0

cr

ii 1

U,

44

00

- 0

4q D;



98. In any case, a well-designed pipe must satisfy the strength condi-

tion of the appropriate strength envelope, the internal equilibrium (and con-

tinuity) condition of Equations 42 and 43, and the axial force which is in

equilibrium with the applied load according to Equations 39 and 40. The

intersection of two straight lines, one radial, one horizontal, with the

strength envelope provides the desired solution, as illustrated in the follow-

ing examples.

99. Two failure modes are possible: with equal moments at springing

and crown according to Equation 41, the eccentricity line for the springing

section intersects the strength envelope first, indicating compression failure

at this section, as shown in Figure 25a, or the eccentricity line for the

crown section intersects the strength envelope first as shown in Figure 25b,

hn

emsp

Wrequired r ure

n so

Pr

mcr = mcr

a. Springing critical b. Crown critical

Figure 25. Strength design of rings

indicating tension failure (tensile yielding of the inside steel) at the crown

section. Equations 42 and 43 indicate that for thick rings (R/h small) the

former is likely to happen, for sufficiently thin rings (R/h large), the lat-

ter may occur.
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Design Procedure

100. With loads and pipe radius, as well as material strengths speci-

fied, two different design situations can be visualized:

Case 1. Given: Pipe thickness h

Required: Reinforcing Aso - A - (1/2)Ast

where

Asi = steel area of inner cage, inches squared/feet

A = steel area of outer cage~so

A = total area of reinforcement in section (inner and outer
st cages)

or

Asf

Case 2. Given: Specified steel reinforcing index wIi =

c
Required: Thickness h

where w is reinforcing index, dimension term used in development
of nondimensional strength envelopes.

101. An example will be given for each of these cases. No load or

resista-ice factors are considered here, so the specified loads should be

considered ultimate values.

Case 1

102. In this case, with concrete cover specified, the appropriate value

of y can be computed to select the proper set of interaction envelopes (or

interpolate between given values) and draw the eccentricity lines of slopes

h/esp and h/ecr according to Equations 42 and 43. The nondimensional axial

section forces, n and n , are computed for the specified loads bysp cr
Equations 39 and 40 and projected horizontally on the dimensionless section

strength plot. The intersection of these lines with the corresponding

eccentricity lines defines the reinforcing index required at spring and crown

sections.

103. Since the strength envelopes are calculated for equal inside and

outside reinforcing, this design requirement should be satisfied.
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Availability of a computer program which generates data for unequal inside and

outside reinforcement seems useful for economical design of pipe structures.

104. In the example design of Case 1, the dimensions and material

strengths are those of specimen G-1 of Heger, Navy, and Saba (1963).

Given: Inside diameter 72 in.

Wall thickness - 7 in.

Concrete cover = I in.

Factored load, vertical = 24 k/ft2

Factored load, horizontal - 12 k/ft2

V = 4.8 ksi
C

f = 88 ksi
y

Required: Reinforcement

R - 39.5 in.; R/h - 5.64 ; y - 0.71 0.7

k - 12/24 - 0.5

where y is dimensionless cross-sectional parameter used in develop-
ment of nondimensional strength envelopes.

Keep all units in inches; per foot length of pipe:

w - 2.00 k/in.

b - 12 in.

From Enuation 39: np wR 0.196
sp f' bbc

From Equation 40: ner k • ,. h =  .9
c

h 4 I

From Equation 41: h _ "(Rit. - 1.418
e I1-5k3
sp
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h 4kFrom Equation 42: e 1 - k (Rh) 0.709

Enter graph for y = 0.7 (Figure 26):

Springing lines intersect at w = 0.18 (w sp is reinforcing index

for springing section)

Crown lines intersect at w = 0.27 (wcr is reinforcing index

for crown section)

Crown section controls:

ft

PTotal req'd = - - 0.0147 (P is tensile reinforcement ratio)
Y

A S Total req'd 0.0147 - 12 • 7 - 1.24 in. /ft

2
AS1 S A = 0.62 in. /t for continuous ring reinforcement

Spring section:

sp . 2 for noncontinuous reinforcement
W 3cr

Possibly, a better design might be a combination of:

continuous inside steel area - 3/2 outside steel area

but this case is not covered by strength envelopes which are limited to equal

steel inside and outside.

Case 2

105. In this case, a value of h has to be assumed, allowing the com-

putation and plotting of the equilibrium lines of slope h/e and h/esp cr

according to Equations 42 and 43. The horizontal axial force lines according

to Equations 39 and 40 are also drawn. If these lines for the critical
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section intersect on the desired w strength envelope, the assumed value of

h is correct. If not, a new value of h will have to be assum-d and the

process repeated, as shown in the following example.

106. In the example design of Case 2, the diameter and material proper-

ties of the preceding example are used, but the earth pressure is varied to

demonstrate compression failure.

Given: Inside diameter = 72 in.

Concrete cover 1 in.

Desired total steel ratio PTotal - 0.011

f' - 48 ksi
c

f = 88 ksi
y

Factored load, vertical = 60 k/ft
2

Factored load, horizontal -
40 k/ft

2

Required: Wall thickness h .

Assume h = 12 in.; R = 42 in.; R/h - 3.5 ; y = 0.83 ; k 0.67

f

Wreq'd = f = 0.2
c

Per foot length of pipe:

w = 5.00 k/in.

b = 12 in.

wR
From Equation 39: np f' bh = 0.304

c

From Equation 40: nc k •Rh = 0.203
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From Equation 41: h 4 1 k 3.43
e 1-k 1R/h)

From Equation 42: - 14k k - .  y - 2.29
cr

107. The trial calculations can be set up in tabular form (Table 5),

using the nondimensionalized strength curves of Figures 21 through 24; obtain

n and n from Equations 39 and 40, h/e and h/e from Equations 42sp er sp cr

and 43. Figure 27 presents the nondimensionalized curves for the 8-, 9-, and

12-in. sections.

Table 5

Case 2 Trial Calculations

Assumed R n n h/e h/e

h , in. in. y R/h sp cr sp cr req'd

12 42 0.83 3.5 0.304 0.203 3.43 2.29 0.03

9 40.5 0.78 4.5 0.391 0.261 2.67 1.78 0.16

8 40 0.75 5.0 0.434 0.289 2.40 1.60 0.22
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PART VI: SHEAR STRENGTH OF RINGS

Background

108. Shear strength of reinforced concrete culvert pipe has been of

concern for some time. Heger (1963) and Heger and McGrath (1982b) have pro-

posed two different empirical formulations for shear strength of ring sec-

tions, based on test results of rings under three-edge bearing tests, as well

as other experimental evidence.

109. While shear strength of curved reinforced concrete members under

combinations of axial force, shear force, and moment may be of both basic and

practical interest, its importance in concrete pipe buried in the ground can

be questioned. No evidence of shear failure in buried concrete pipe has been

apparent.

110. Garner (1986) has studied the shear aspects of the WES test

series. None of the specimens of this series failed in shear, although they

were of relatively thick cross section, generally considered to be shear-

critical, and subject to a wide range of load distributions. However, Heger's

method (1963) did preci.. sbtac failure for these specimens, and a critical

study of this strength formulation is warranted.

Helpful Computations

111. The following computations are intended to clarify the question of

criticality of shear in both the WES test specimens as well as buried culvert

pipe, in general.

Procedure

112. A circular reinforced concrete pipe as shown in Figure 28, of

radius-thickness ratio R/h , of equal circular reinforcement inside and

outside, total reinforcement index wt = (A f )/(hf') per unit length is
t st y c

considered. No web reinforcement is provided.

113. Two loading conditions will be considered: the radial load shown
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h~~A st =Asi + A

jR

Figure 28. Culvert pipe section

in Figure 29a, varying sinusoidally as applied in the WES test series:

p W [(1 + k) - (1 - k) cos 2e

and the EM 1110-2-2902 (Headquarters, Department of the Army 1969) loading

consisting of uniform vertical load w , and lateral load kw , as shown in

Figure 29b. To determine conditions under which the pipe is likely to fail in

shear and those under which axial-flexural failure is critical, follow this

procedure:

a. Determine the load w under which shear failure will occur,

following the methods of Heger (1963), which had previously

been considered by Garner (1986), and Heger and McGrath (1982b).

kw

a. Test loading b. EM loading

Figure 29. Loading conditions
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b. Determine the load wf under which flexural failure will

occur. Following earlier work (Part IV), use the strength
method, which combines ultimate section strength with elastic
structure analysis.

c. Compare shear and flexural strength by setting up the ratio
wf/w s . If larger than unity, shear failure is predicted; if
less than unity, flexural failure should occur.

114. The ratio wf/w s = I will be plotted for a range of ring propor-

tions R/h , load distributions k , and reinforcing indices w , to compare

criticality of shear and flexure for a full range of conditions.

Shear Strength

115. The shear strength of curved members as in reinforced concrete

pipe has been investigated over many years by Heger (1963) and Heger and

McGrath (1982a, b, c). Two different methods proposed by these authors will

be followed. Garner (1986) used only the Heger (1963) work to analyze the WES

oqR ..... A "-although the ACI equations predict shear tailure for

the 16-point load tests, none of the models failed primarily in shear." It is

of interest to check whether the Heger and McGrath (1982b) formulation might

be more successful in predicting the failure mode of these rings.

116. The details of the shear strength prediction according to Heger

(1963) and Heger and McGrath (1982b) will be relegated to Appendix C, in order

not to interrupt the flow of the presentation. Overall, the sequence of

determination of the shear strength w is as follows:
5

a. Determine the shear strength Vb  at the critical section

according to Heger (1963) or Heger and McGrath (1982b).

b. Determine the internal forces V , N , and M at the criti-
cal section for the specified loading condition as a function
of the applied load w .

c. Equate the shear force V at the critical section to the
shear strength Vb and solve for the applied load w which

5

would lead to shear failure.

Axial-Flexural Strength

117. The graphical method outlined in Part III is used to determine the

flexural strength of the rings under both test (radial) loading and EM
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loading. To conform to the nondimensional character of the investigation, use

the appropriate nondimensional n-m strength envelopes ot Part V, using the

strength method, which combines the ultimate section strength for cu = 0.003

with elastic structure analysis.

118. To limit the number of variables, assume the cross-sectional

parameter Y = (h - 2d')/h = 0.7 , which is a reasonable average value. The

reinforcing index w varies from 0.03 to 0.11 for the WES test specimens, and

is assumed to range from 0.05 to 0.15 for real culvert pipe in ground. R/h

values ranging from 2 to 10, and load ratios ranging from k = 0 to k = 0.8

are considered.

119. Because the shear strength according to Heger is a function of

i-r . but the flexure strength depends on f' itself, a value for the con-
c c

crete strength must be assumed. The analysis has been carried out for rings
having an f' value of 5 ksi and an f value equal to 60 ksi

c y
120. With the axial force N or N at the critical section known,

sp cr
the flexural failure load wf can be computed by Equations 3 or 5 for the

test or EM loading.

Failure Mode

121. With ws and wf known for various values of ring and load pa-

rameters R/h and k , the contours W s/W = I can be plotted for different

values of the reinforcing index w . Such a plot is shown in Figure 30, in

which the vertical axiq represents the ring proportion R/h , the horizontal

axis, and the load distribution k . The contours Ws/Wf = 1 for w = 0.1

are shown for two shear strength methods, Heger (1963) and Heger and McGrath

(1982b), and for two loading conditions, the radial test loading and the EM

loading.

122. Any ring with parameters above the respective contour should fail

in flexure, and any ring with parameter combination below the contour should

fail by shear, according to the adopted failure criteria.

123. The following conclusions can be drawn from a study of Figure 30:

a. Thicker rings, under loading approaching hydrostatic, are more
likely to fail in shear. Thinner rings, under more nonuniform
load distribution, are more likely to fail in an axial-
flexural mode.

62



- R/h/
/ /

/ /
/ /

8. FLEXURE CONTROLS / /

WES TEST LOADING / / Wf

-*/

THINNER 7
.. . EM LOADING

4

I SHEAR CONTROLS

LEGEND

HEGER (1963)
2

_HEGER AND MGRATH (1982b)

WES TEST SPECIMENS

K
0b I I

0 0.2 0.4 0.6 0.8 1.0

I. MO!E HYDROSTA TIC

Figure 30. Flexural versus shear failure

b. The WES test (radial) loading is more likely to lead to shear

failure than the EM loading.

c. For all cases, Heger (1963) predicts greater shear-criticality

than Heger and McGrath (1982b).

124. The range of parameters for the WES test specimens is also indi-

cated in Figure 30 as a rectangular box. Although Heger (1963) predicts shear

failure for all these specimens (as noted by Garner (1986)), each one failed

in flexure. In view of this apparent inadequacy of Heger's (1963) method, all

further comparisons will draw on the Heger and McGrath (1982b) procedure.
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Analysis of WES Test Results

125. The empirical formulation of the shear strength of the WES test

specimens according to Heger and McGrath (1982b), as outlined in Appendix C,

was implemented for values of w = 0.05 , 0.07 , and 0.09 , reflecting the

levels of reinforcing of these rings. The results are shown plotted in Fig-

ure 31. It appears that the amount of flexural reinforcing has only a minor

influence on the failure mode.

126. The location of the 18 test specimens, divided into four groups

according to the reinforcing indices matching those of the computed

10 R/h

8 FLEXURE CONTROLS

w - 0.09

0.07

6 0.05

THINNER Wf
-= 1
Ws

LEGEND

0 0.09Kw
o 0.07 < w< 0.09
8 0.05 < w < 0.07

S co < 0.05
2 1

SHEAR CONTROLS

0 1 K0I i I I K

0.2 0.4 0.6 0.8 10

MORE HYDROSTA TIC

Figure 31. Predicted and observed failure mode for WES tests
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contours, is also shown by different symbols on this plot. If these points

appear below the respective contours, shear failure is predicted according to

Heger and McGrath (1982b); if above, flexural failure.

127. Heger and McGrath (1982b) predict shear failure for all of these

specimens with the exception of Models C7-1 and C8-2, and, in fact, none of

these specimens failed in shear. Heger and McGrath (1982b) underestimated the

shear strength of these rings by a considerable margin.

Likelihood of Shear Failure of Pipe in Ground

128. To assess the shear failure of circular culvert pipe in ground due

to soil pressure, pipe of proportion R/h ranging from 5 to 10 is considered.

The load distribution factor k , for various backfill conditions and soil

types, according to EM 1110-2-2902 (Headquarters, Department of the Army 1969),

Sec. 4, might vary from 0.10 to 1.0, whereby it is unlikely that the latter,

hydrostatic condition, would be critical for design of circular culvert pipe.

129. The reinforcing index w for real culvert pipe might range from

0.05 to 0.], and Figure 32 shows the w f/ws = I contours for these values

plotted according to Heger and McGrath (1982b), along with the field R/h and

k , for real culverts.

130. It is seen that according to Heger and McGrath (1982b), only rela-

tively thick, heavily reinforced culverts under loads verging on the hydro-

static might fail in shear. Since such loading conditions ere unlikely to be

critical for design, shear failure in the ground appears unlikely.

131. Further, it was shown in the preceding section that the contours

according to Heger and McGrath (1982b) are too high. If lowered according to

the comparisons with the WES test results as shown in Figure 31, then it ap-

pears that the entire field of realistic circular culverts is located in the

axial-flexural failure range.

132. It can be concluded that shear failure of circular culiert pipe

under soil pressure is quite unlikely.

Shear Strength of Rings in Three-Edge Bearing

133. Because the Heger (1963) and Heger and McGrath (1982b) formula-

tions have been calibrated using three-edge bearing test results, and because
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Figure 32. Failure mode for pipe in ground

these formulations do not seem effective in predicting the shear strength of

rings under distributed loadings, it seems appropriate to study the three-edge

bearing test conditions and results. To determine possible causes for these

discrepancies, the test data of Heger, Nawy, and Saba (1963) were studied.

134. The tenuousness of relation between pipe strength in three-edge

bearing and in the ground was pointed out by Heger and McGrath (1982c) as

follows:

"(The three-edge bearing test) does not always provide an
accurate basis for determining the in-ground strength of
the pipe..., due to differences.. .between in-ground
loading conditions and three-edge loading conditions."
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135. The approach used in this technical report, which uses a rational

method for the determination of the axial-flexural strength and the best

available formulation for the shear strength, could be expected to provide

understanding of conditions and modes of failure, irrespective of loading con-

dition. Accordingly, the same method used in a previous section will be used

to analyze some of the three-edge bearing tests of Heger, Nawy, and Saba

(1963) to compare them to observed failure modes.

Failure Modes for Three-Edge Bearing and Distributed Loads

136. To analyze for flexural or shear failure, proceed in this manner:

a. Follow the strength approach of Part IV for determination of
the axial-flexural strength, using nondimensional formulation.

b. Follow Heger and McGrath (1982b) as previously outlined to
determine the shear strength, on a nondimensional basis.

C. By comparing the results of a and b, predict criticality of
flexural or shear failure for rings of given characteristics:
because the load distribution factor k is not a variable in
this case, attention has been focused on the ring slenderness
R/h and the reinforcing index w .

137. The critical section in flexure is at the loaded crown section,

where the axidl force is zero, so the sectio' is in pure bending. The loca-

tion e of the critical section for shear, according to Equation C-6, is

given for the assured average value of y = 0.7 by the transcendental

equation

2 1 2.55tan e _ 2.55 (44)
cos e h

The shear strength of the section at points defined by this equation was cal-

culated according to Heger and McGrath (1982b), using the procedure outlined

in Appendix C. The average values, y = 0.7 , f' = 5 ksi, and f = 89 ksi,
c y

have been assumed representing values of Tables I and 2 according to Heger,

Nawy, and Saba (1963). Steel Inside and outside was assumed equal in area to

that of the inside steel at the critical section for flexure. This approxima--

tion seems insignificant.

138. The ratio of flexural to shear strength P f/Ps was computed, and

the contour P f/Ps = I entered onto the plot of Figure 33. Any ring in
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Figure 33. Predicted and observed failure modes for

three-edge bearing tests

three-edge bearing above this contour should, according to these predictions,

fail in flexure; below this contour, fail in shear.

139. On the same plot, the test results have been entered from Table 4

of the paper by Heger, Nawy, and Saba (1963), which summarizes a test series

conducted at the Massachusetts Inqtitute of Technology on rings. These are

indicated by two different symbols in Figure 33. All specimens except two are

well within the range in which shear failure should be expected. Three speci-

mens which are on, or near the dividing line between expected shear and flexu-

ral failure, did fail in flexure. It appears that American Society for

Testing Materials culvert types unreinforced against shear, with all but mini-

mal hoop reinforcing will always fail in shear, as reported by Heger, Nawy,
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and Saba (1963). Indeed, those specimens within this range which were re-

ported in the same study to have failed in flexure were supplied with shear

reinforcing. Further, the reported failure loads of these rings were reason-

ably close to those predicted by the Heger and McGrath (1982b) method. This

should have been expected since they were used to calibrate this prediction

method.

140. Still unresolved is why the Rezer and McGrath (1482b) formulation

does in fact seem to be able to predict the shear strength of pipes under

three-edge bearing, but not under distributed loads. Two possible reasons are:

a. In pipe under three-edge bearing, sections of maximum shear
are also sections of maximum moment, whereas in pipe under
distributed loading (test or EM), the section of maximum shear
corresponds to the section of zero moment, and vice versa.
Thus, it is possible that there is little relation between the
shear strength of pipe under three-edge bearing, and that of
pipe in the ground.

b. Further, the critical section in Heger and McGrath (1982b)
defined by Equation C-6 was based on beam test results of
Kani, Huggins, and Wittkopp (1979). This approach simply
states that if a point load is applied too closely to the beam
support, transfer of load to the support takes place by com-
pressive arch action rather than by flexural shear leading to
diagonal tension. Rings under distributed loading (or three-
edge loading, for that matter) respond quite differently and
their critical sections may ilso be located elsewhere.

Suggestion for Shear Test Program

141. The results of the preceding sections indicate that currently

available methods for prediction of shear strength do not seem particularly

effective for assessing the shear capacity of pipe sections under distributed

loading. This is not surprising since these are empirical equation3 based on

test data from a variety of specimens under quite different combinations of

geometry and loading.

142. In view of the fact that so far, rational analysis of shear

strength of even straight, prismatic, reinforced concrete beams has not been

very successful, it appears that empirical approaches based on test results of

appropriate specimens must be relied on for better information. In the fol-

lowing paragraph, one approach is suggested.

143. Refer to the test program of Heger and McGrath (1982a) on radial

tension strength, which deals with one third of an 84-in.-diam pipe section,

69



subtending 120 deg, supported and loaded for constant moment and zero shear at

midspan. The same specimen, under different arrangement of load and supports

as shown in Figure 34a, will have a region of constant shear and variable

moment in its central region, as shown in Figures 34b and 34c.

144. With shear reinforcement provided over all but the portion of the

specimen expected to fail in shear, shear failure under a range of M/V

ratios could be investigated with such an arrangement. Small axial forces

will also be present in the specimen. Independent control of axial forces

will be more complex.

145. If shear strength of culvert sections is of concern (in spite of

the question of relevance raised in a preceding section), then it appears that

a purposeful, carefully designed series of tests may be necessary. Such a

test program will require considerable planning and investment.
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PART VII: SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary

146. In an effort to gain maximum benefit from the results of the WES

ring test program, various experimental and analytical aspects of circular

reinforced concrete culvert sections were studied. Among these were analyses

of the flexural strength of these specimens according to elastic and plastic

theories (Parts II and III), and comparison with test results (Part IV). Also

in Part IV are studies of the effects of variour basic material and structure

assumptions on analysis results. Part V deals with design aspects of circular

rings, whereby a graphical longhand method was str. ssed. This approach can be

used in practice but, more importantly, also provides an outline for a

computer-based design procedure to be implemented in future work. Part VI

considers problems of shear strength of reinforced concrete rings without

shear reinforcement under various loading conditions and points out a number

of discrepancies to be resolved by future studies.

147. Among aspects which were not considered in this work were:

a. Crack width limitations.

b. Radial tension problems, or "slabbing."

c. Most importantly, the interaction between soil and structure.
All analyses of pipe in the ground were carried out using the
soil pressures prescribed in EM 1110-2-2902 (Headquarters,
Department of the Army 1969). In fact, the soil provides not
only the load, but also the constraint which prevents uncon-
trolled deformations of the pipe, therefore contributing to
the pipe strength.

Conclusions

148. Some of the major conclusions from the study are:

a. Plastic or elastic analyses of ring sections under distributed
loads are practical, convenient tools for strength determina-
tion. For radial or EM 1110-2-2902 (Headquarters, Department
of the Army 1969) loadings on circular rings, elastic analysis
is even simpler than plastic analysis. Sufficient rotation
capacity is available for full redistribution of moments.

. J~ .,lstic theory at both section and structure level (the
"working stress" approach) underestimates the flexural
strength of rings by a wide margin.
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c. The choice of crushing strain of concrete has only a minor
influence on the ultimate section strength. An ultimate
strain of 0.003 in./in., corresponding to ACI 318 (1983), is
recommended.

d. The strength method, which combines ultimate section strength
with elastic structure analysis, is recommended for pipe
design. It follows well known concepts, is convenient, and
will produce results slightly on the conservative side of
fully plastic analysis. Elastic analysis also provides a
basis for future inclusion of soil-structure interaction.

e. Comparison with results of the WES test series indicates flex-
ural reserve strength beyond that predicted by either strength
or plastic analysis for thick rings, but unsafe predictions
for the thin rings. Possible explanations are offered for
these discrepancies.

f. Prediction of shear strength of rings according to Heger
(1963) or Heger and McGrath (1982b) is satisfactory for rings
in three-edge bearing, but is highly conservative for shear
strength determination of these rings under distributed load-
ing. Possible explanations are offered for these
discrepancies.

Calculations indicate that shear strength may never be of con-
cern for circular concrete pipe in the ground.

Recommendations for FurLher Work

149. The following recommendations are intended for logical continua-

tion of the work done so far, with the aim of arriving at a better understand-

ing of the behavior and strength of circular concrete culvert pipe in the

ground. A full understanding will permit optimal design of safe and economi-

cal pipe.

a. Computerized flexural design methods, based on the principles
outlined in this report, should be developed and implemented.
Harter, Bircher, and Wilson (1980) provide a solid foundation

for this work.

b. In view of the apparent inadequacy of currently available
methods for prediction of shear strength of pipe sections, a
complete, well-thought-out study of shear strength, with both
analytical and experimental phases, seems indicated. Part VI
contains some suggestions along these lines.

c. The loading conditions in EM 1110-2-2902 do not seem realis-
tic. Since pipe strength depends primarily on the soil pres-
sure experienced by the pipe during its lifetime, a complete
understanding of the soil-structure interaction is necessary.
Modern computer methods permit such analyses. Currently avail-
able tools (Olander 1950; Heger, Liepins, and Selig 1985)
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should be studied for applicability, and procedures laid out
which incorporate these effects in analysis and design. This
requires cooperation of structural, geotechnical, and computer
engineers, and a long-term commitment, but will be
necessary for rational assessment of pipe safety.
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APPENDIX A: ELASTIC ANALYSIS OF RINGS

(Equations and figures cited in this appendix can be found
in the main text by the corresponding numbers, and refer-
ences are listed in the References section at the end of
the main text. Symbols used in this appendix are defined
in the Notation, Appendix D.)



Equilibrium

(From Figure 2): On element of unit length:

Y = w • sin e X = kw cos e

2 2

Y= w sin 2 6 XN = kw • cos o

YT = w • sin e cos e XT = kw sin eos 0

2 2
PN = YN + X = w (sin 2 0 + k • cos 2)

= [(I + k) - (I - k) cos 2e] ()

PT = YT - X = w (sin 8 cos e - k sin a cos e)

W (I - k) sin 20 (2)
2

US Army Engineer Waterways Experiment Station (WES)

Test loading: Due to pN only

(From Figure 4b)

Axial forces at Springing (SP) and Crown (CR) (Compression is +):

9/2

ZF = 0 : NN = f sin ' RdOPN

0=0

T/2
= (- f I + k) - (I - k) cos 2e] sin edo

0

= wR (2 + k) = 8 P (2 + k' (3a)

A2



Tr/2

EF =0: NN cos 6 RdO
Xcr f

8=0

/2

- -] (1 - k) sin 26 cos 6d6

0

wR

(2k + 1) P Pcr (2k + 1) (3b)

(From Figure 4b):

7M = 0 : (N - N )R + M + M 0:
n cr Sp cr sp

(M + M )=(N -N )R
sp cr sp cr

wR 8
3 ~ c( k) =-P R(!,- k) (7)3 37 cr

EM 1 10-2-2902 (Headquarters, Department of the Army 1969) loading: Due to

PN + pT (From Figure An)

-/2

EF = 0: N PT cos e RdO

0=

wR fwR= T 1 - ;Isr 20 cps Od( =T l k) (4 a)

f
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1T/2

F N fT f PT sin eRd6
6=0

Ir/2

wR (I - k) sin 26 sin 6d6 = - (k - 1)

0

Adding resultants of pN and pT (EM loading):

N = N + NT  = wR (5a)
sp sp sp

N = N + NT  = kw R (5b)
cr cr cr

From Figure 4a:

ZM = 0 :M + M + N *R - wR(1 + k) =0sp cr sp cr 2

w2

(Msp + Mcr (1 - k) (6)

Elastic Analysis CONVENTION> d + MOMENT

Procedure:T)

1. Use Force Method 
X

+

X

2. Use Symmetry: a. Compute X due to symmetric point loads P , T

b. Integrate over IT P = PN ds

T = pT ds
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3. Compute effects of normal loads PN and tangential loads PT

separately.

4. Compute M and N at SP and CR sections

Normal Load Components

Concentrated load P at 0

Sym SYM

R

M = PR(O - cos a) , 5 e m = 1 , 0 eS

M = PR (sin e- cos o cos 3), (j- e)

By VW :

• Rd R = sine-)

6=0

T/ 2 2
~I2R _1

f Rd 2

6=0

X PR - sin = M

A5



and

M = PR - sin 0 cos a) a ! e

M = PR 2 cos 1 Cos -

Moment at SP and CR:

M . M(cx = 0) = PRQ. - sin 6)

M 'MB= 0) = PR 2 e)s

Due to p = 1 + k) - (1 - k) cos 26

= w(a - b cos 2e) : in which a (1 + k)

b - (1 - k)

P = PNRd0 = w(a - b cos 26)RdO

Integrating over quarter ring:

ir/22

M= J w(a-b cos 26)2-_sin R 2d = - w R 2 (1-k)

0=0

/2

Mcr= j w(a-b cos 26) i - cos 2dO = 
w R 2 (1 - k) (24)cr f (TI -) 6)(

0=0

Moments due to WES test loading are equal

A6



Tangential Load Components

Concentrated load T at 0

LOAD OMPOENTS TR (SinO' + Coso -1)

T

R(1-CoSa)--6 To.6

M = TR cos e (I cos ax) ,a <

M = TR(cos 0 + sin 0 cos 6-1

Due to redundant X = 1 (as before)

m= 1

By VW

AO Tr i2 L* RdO TR + :- (Cos 0e )

8=0

6 f m Rd Trl

0=0

A7



X =- = TR I - cos e - M e = p
it sp

M = TR - cos e cos a - < e , a 6

M = TR (in e cos 6 - ) ., - 6

Moment at SP and CR:

M = M(a = 0) = TR -cos a- )
sp 1I

Mcr = M(6 = 0) = TRsin 8 
-

2 e
W

Due to p = 2 (I - k) sin 26 = w - b sin 26

where b = ( - k)

T = wb sin 26 • Rde

Integrating over quarter ring:

7r/2

M f (wb sin 26) 1 -os e - )R2d6 - wR 2 (1 - k)

a=0

iT/2

M = (wb sin 2 ) Cos0 R 2 + wR2(1 - k)
cr f6)(Tr 1,R6 L 2  1-

=0

Due to EM 1110-2-2902 loading: Add results due to P and T loading:

Ms= wR 2(1 -- k) , -L)R2(1 - k)

sp6

A8



Mcr wR 2 ( 1 - k) (+ + L) + wR 2(1 - k) (25)

Moments due to EM 1110-2-2902 loading are equal.
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APPENDIX B: HINGE ROTATION OF RINGS

(The equations cited in this appendix can be found in the

main text by the corresponding numbers, and the references
are listed in the References section at the end of the main
text. Symbols used in this appendix are defined in the
Notation, Appendix D.)



Plastic Hinge Rotation

esp

Assume plastic hinge rotation occurs at SP

Hinge rotation e 2A- i0

sp c
Ncr

A' due to AP at e From Appendix A: M

M= Mcr Mo

AO APR 2 firsi
A0 - 'p-2 sin e -ElI

Due to distributed test loading: AP - AP = Aw(a - b cos 2e)Rde , and

A° AR- f (a- b cos 26)2 0sine - 1)dO

0=0

AwR 3  
T 8

(I - k) since Aw -R AcrE1 12 7R c

AwR3 r AP R2_ cr 4 1k
esp 71 T ( - k)= El 3 ( I - k) (33)

37o 1
Hinge rotation at SP due to Test Loading for P > 31 M o

cr 4 R 1- k

A0  due to AT at 8 : From Appendix A:

A- A 2 re + 'T (Co]
ET L 2
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Due to distributed tangential loading: AT ApT - Aw b sin 2C • Rd;

AW/2 ir]
= f--3  (b sin 26) * [e + r (cos - 1 d6

0=0

AwR 3 ( )
(- 1 -k)

Due to EM 1110-2-2902 (Headquarters, Department of the Army 1969) load:

Ao - o + A =wR (I - k) . 5-

AN T El 12

Hinge rotation due to EM load is:

esp 2A 3 (1 - k) 5v (34)

Mo 4
Hinge rotation at springing due to EM 1110-2-2902 Loading for w > -

R
2  - k

Plastic Hinge Rotation at SP for Specimen 2-1, WES Test Loading

From Wright and Chiarito (1987) and as shown in Table 1:

1
R - 7.47 in., k - 1

3

From Wright and Chiarito (1987) and as shown in Tables 3 and 4:

E - 28.1 x 103 ksi

n =6.7

E - 4.19 x 103 ksi
c

B3



where

E = modulus of elasticity of steels

E = initial elastic concrete modulus
c

I OF UNCRACKED SECTION I= L 3
T 12 * 5.27 -5.00~

i 2I+ 6.7 -0.10 -1.75 2
As 0=. 10 in 2

=59.0 in.2

3
1. .7 5"l.7 5" ET -4.19 10 -59

H = 5.0 in.

= 247 • 10
3 k-in. 2

From Equation 33 for test loading, with AP = 28.8 k - 27.8 k = 1.0 kcr

a 4 (1 - k) A = 0.20 10 rad
sp 3 El

Rotation capacity at SP for Specimen 2.1, WES Test Loading

For M = 55 k-in., N = 57 k: c = 4.2 in.
sp sp

- C 0.003 -

.2 0.71 10 rad/in.
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APPENDIX C: SHEAR AND FLEXURAL STRENGTH OF RINGS

(The references cited in this appendix are li3ted in the
References section at the end of the main text.)



1. In this appendix, calculations in support of the analyses presented

in Part VI, "Shear Strength of Rings," will be shown in this sequence:

a. Two formulations for the shear strength of rings, by Heger
(1963) and Heger and McGrath (1982b). The procedure leading to
the shear strength values w5  used in Part VI is also outlined.

b. Procedure and sample calculations for the calculation of the
flexural strength wf for these rings, using methods estab-

lished earlier in Part III.

Shear Strength According to Heger and McGrath

Heger (1963)

2. This approach is based on principal tension stress as affected by

the radial stresses in the curved member, calibrated by reference to ACT shear

strength. The nominal shear strength

Vb b = 1.9 + 2,500 p* V d (C-I)b, _ ZMm

where

v b = nominal shear strength of sectio pounds/square foot

Z = correction factor for the initial curvature of the member

d = distance from extreme compression fiber to centroid of tension
reinforcement

and the expression in brackets is from "Building Code Requirements for Rein-

forced Concrete," Sec. 11.3 (ACT 1983).

3. A simplified expression for the curvature factor Z is

Z = 0.9 1 + 2- + 0.45 V Mm

where

g = distance from center line of section to compressive resultant force

r = radius to inner steel cage
5

Mm = M - • N
u 8fu

M u = ultimate moment acting on a cross section of width b
Cfoot-pounds/foot

C2



N = ultimate thrust acting on a cross section of width b , pounds/foot

4. After introduction of some empirical constants, Equation C-I

simplifies (Heger 1963) to

Vb AS
Vb = 1.53/F + 320 Di (C-3)

where

ASi = steel area of inner cage, inches squared/feet

Di = inside diameter of pipe, feet

5. In terms of the nondimensional quantities (R/h), y , and w used

earlier in our work, for equal steel inside and outside, and considering

b = unity , Equation C-3 becomes

U = 0.77 + 480w -f I (1 + (C-4)

I R. R yRh
c 

-

6. Assuming y = 0.7 , f' = 5,000 psi, f = 60,000 psi as average
c y

values, Equation C-4 becomes

b 1.31 + 0.963 (C-5)

/Tr .R _ 1 ) Rh
c (

Equation C-5 was used for the shear strength according to Heger (1963) in

these calculations.

Heger and McGrath (1982b)

7. Heger and McGrath's study postulated that the critical section for

diagonal tension failure of a member under shear force V and moment M

would be at the point where

M
- - 3d (C-6)V

8. At this critical section, the "basic" shear strength is

C3



Vb

Vb = bd = (1.1 + 60p) T (C-7)

9. Correction factors FN  and FC  account for the effects of thrust

N and initial curvature R/d

Vb (1.1 + 60p)
vb FNF c (C-8)

in which

F = I - 0.12 2 t 0.75 (C-9)
N V

and

FC = (I + L for tension inside (C-lOa)

I for tension outside (C-lOb)

10. Two at.ditional correction factors of Heger are neglected here. For

b = unity , Equation C-7 can be nondimensionalized:

ft

V 1.1 + 60w 
( +c

F F . (1 ) (C-11)

,N(C 2(R/h)
c

Equation C-li was used to compute the shear strength according to Heger and

McGrath (1982b) in our calculations, whereby care is necessary to distinguish

between Equations C-10a and C-10b for FC
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Internal Forces

11. To find the applied load w under which shear failure occurs, we
5

must equate the internal shear at the critical section to the shear strength

Vb  as computed in the preceding sections. For this reason we must compute

the internal forces due to the two loading conditions considered. From elas-

tic analysis (Part III):

Test (radial) loading

N =~ [(1 + k) + -5 (1 - k) cos 2] (26)

wR

V = (1 - k) sin 20 (27)

wR 2

M = T (1 - k) cos 20 (28)

EM loading

N HR- [( + k) + (1 - k) cos 20 (29)

wRV = -- (1 - k) sin 20 (30)

wR 2

M = -- (1 - k) cos 26 (31)

12. These forces must be evaluated at the critical section, located at

an angle 0

C

13. For Heger (1963), the maximum shear occurs at 0 = 45'. For Hegerc

and McGrath (1982b), Equation C-6 defines the critical section, in which M

and V are inserted from Equations 27 and 28 for the test loading, and from

Equations 30 and 31 for the EM loading. In either case
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q

M R c C
si 6= 3d

V 2 sine 3d
C

or

cot 2e =6 = 3(l + y (C-12)
c R (R/h)

14. For given y and R/h , the location of this critical section can

be determined from Equation C-12, and the appropriate forces computed from

Equations 26 through 31.

15. These computations were carried out for an appropriate range of R/h

and k , and the shear force V equated to the shear strengths according to

Vquationq C-5 or C-11 in order to arrive at the shear strength w /f?r .
s c

Axial-Flexural Strength

16. The graphical method, suitably computerized for computation

purposes, as outlined in Parts III and IV, was used for the determination of

the flexural strength wf of the rings. The axial force at the critical

section, which could be either at the crown or at the springing, is determined

by the intersection of the radial line of appropriate slope (e/h) with the

strength envelope. The corresponding load w, is then determined by elastic

analysis, using the following relations.

Test loading

17. Using Equations 35 and 36, and nondimensionalizing by dividing

through h , we obtain the nondimensionalized eccentricities for springing and

crown sections:

k ) (C-13)Osp 2k2 + k/ h (-3

h )r = 1k)+i l k (C-14)
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18. The nondimensional flexural failure load is found from the non-

dimensional axial force n = N/(f -• bh) at either springing or crown by

statics, using Equation 3:

wf 3 1
fy 2 + k R"n• if the springing section is critical (C-15)

c

or

w
f (2k + 1) n • R-_ if the crown section is critical (C-16)

c

EM 1110-2-2902 loading

19. Proceeding similarly, the nondimensional eccentricities for the EM

loading are from Equations 37 and 38:

-k) (C-17)

k (c-18)

cr

and the failure loads are computed from the nondimensional axial force

n = NI(f' * bh) , using Equation 5:
C

wf

f-- = n R--- if the springing section is critical (C-19)
c

or

f-r k • n - -I- if the crown section is critical (C-20)

Ratio is w f/w since the shear strength w according to Heger is propor-

tional to If , but the flexural strength w, is P fnactiui, of F' , thec

ratios differ for different concrete 
strengths.
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20. In calculating, the ratio in terms of the concrete strength V is

given by wf/f c /w s//f-r , therefore the actual ratio

wf w /f
f f c

ws  c W/ /T r

s C

All calculations were carried out for concrete strength, fc' = 5,000 psi.
c
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APPENDIX D: NOTATION



A Area of flexural reinforcement in tension
s

A Steel area of inner cage, inches, squared/feetsi

A Steel area of outer cageso

A Total area of reinforcement in section (inner and outer cages)st
b Width of section

c Distance from extreme compression fiber to the neutral axis

d Distance from extreme compression fiber to centroid of tension

reinforcement

d' Distance from extreme compression fiber to centroid of compression

reinforcement

D i  Inside diameter of pipe, feet

e Eccentricity based on averages of moment and thrust values at crown
avg and springing

e Eccentricity at crowncr

e Eccentricity at springingsp

E Ultimate compression strain
u

E Initial elastic concrete modulus
c

E Modulus of elasticity of steel
s

f' Compressive strength of concrete
c
f Yield strength of reinforcing steel
Y

F Correction factor for effects of initial curvature
c

FN  Correction factor for effects of thrust

g Distance from center line of section to compressive resultant force

h Overall depth of section

k Ratio of lateral earth pressure to vertical earth pressure

k Actual value of k at failure for test specimen
act

m Nondimensionalized moment

m Nondimensionalized moment at springingsp
m Nondimensionalized moment at crown
cr

M Average of internal moments at springing and crown acting on a cross
avg section of width b , ft-lb/ft

M Internal moment at crown acting on a cross section of width b
cr ft-lb/ft

M Internal moment at springing acting on a cross section of width b
ft-lb/ft

M Ultimate moment acting on a cross section of width b , ft-lb/ft
u
n Nondimensionalized axial force

n NondimensionaliTed axial force at crown
cr
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n Nondimensionalized axial force at springingsp

N Average of internal thrust at springirg and crown acting on a cross
avg section of width b , lb/ft

N Internal thrust at crown acting on a cross section of width b
r'r lb/ft

N Internal thrust at springing acting on a cross section of width b
lb/ft

N Ultimate thrust acting on a cross section of width b , lb/ftu

PN Radial pressure acting on a unit length of ring

PT Tangential traction acting on a unit length of ring

P Concentrated crown load in a 16-point test loading, lbscr

Pf Flexural strength of conduit defined as distributed load on conduit
at failure in flexural mode

P Shear strength of conduit defined as distributed load on conduit
at failure in shear mode

r Radius to inner steel cages

R Outer radius of conduit

vb Nominal shear strength of section, lb/ft
2

Vb  Shear strength at critical section, lb

w Uniform vertical pressure

X Resultant of horizontal forces acting on ring due to earth pressures

Normal component of horizontal ford~es acting on ring due to earth
pressures

XT  Tangential component of horizontal forces acting on ring due to earth
pressures

Y Resultant of vertical forces acting on ring due to earth pressures

YN Ncrmal component of vertical forces acting on ring due to earth
pressures

YT Tangential component of vertical forces acting on ring due to earth
pressures

Z Correction factor for initial curvature of member used in American

Concrete Institute 318-83 equation for strength

a, B Rectangular stress block constants

y Dimensionless cross-sectional parameter used in development of
nondimensional strength envelopes

E Strain

e Rotation capacityu
P Tensile reinforcement ratio

ou Ultimate curvature
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Reinforcing index, dimension term used in development of nondimen-
sional strength envelope

Wcr Reinforcing index for crown section

W sp Reinforcing index for springing section

W t Total reinforcing index accounting for inside and outside circular
reinforcement

D4


